The inverse eigenvalue problem for symmetric doubly stochastic matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

The inverse eigenvalue problem for symmetric anti-bidiagonal matrices

X iv :m at h/ 05 05 09 5v 1 [ m at h. R A ] 5 M ay 2 00 5 The inverse eigenvalue problem for symmetric anti-bidiagonal matrices Olga Holtz Department of Mathematics University of California Berkeley, California 94720 USA March 6, 2008

متن کامل

The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices

In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some co...

متن کامل

Constructions of trace zero symmetric stochastic matrices for the inverse eigenvalue problem

In the special case of where the spectrum σ = {λ1, λ2, λ3, 0, 0, . . . , 0} has at most three nonzero eigenvalues λ1, λ2, λ3 with λ1 ≥ 0 ≥ λ2 ≥ λ3, and λ1 + λ2 + λ3 = 0, the inverse eigenvalue problem for symmetric stochastic n × n matrices is solved. Constructions are provided for the appropriate matrices where they are readily available. It is shown that when n is odd it is not possible to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00366-5